
ISSN (Online) 2278-1021
ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 8, August 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4867 318

Product selection from comparative question

using cosine similarity analysis and weight

feature analysis

Miss. Pranali Patil
1
, Mr. Sudip Tembhurne

2
, Mr. Rugved Deolekar

3

M. E. Student, Computer Engineering, VIT Mumbai, India
1,2

Assistant Professor, Department of Computer Engineering, VIT Mumbai, India
3

Abstract: Comparing one product with another product when anyone want to purchase products is very typical

decision making process. However it is not always easy to know what product compare and what are the alternatives

are available so to address such difficulty we propose a novel way that can help user to get best product by calculating

feature weight of respective products. The feature weight of product is calculated by using weight analysis. When any

new product is added or any new user given rank then the table where total rank is going to calculate for every product

and for every feature is updated as per weighted feature algorithm .On that basis when user gives query to application

then it will check first is that is a comparable question or not by using cosine similarity analysis and show result the

best from those products respectively.

Keywords:Data mining, compare, weight feature analysis, cosine similarity algorithm.

I. INTRODUCTION

Comparing alternative options while purchasing

something is one essential step in decision-making that we

carry out every day. For example, if someone is interested

in certain products such as Laptops or Mobile phones , the

person would want to know what the alternatives are and

compare different Laptops or Mobiles before making a

purchase. This type of comparison activity is very

common in our daily life but requires high knowledge

skill. Magazines such as Consumer Reports and PC

Magazine and online media such as CNet.com strive in

providing editorial comparison content and surveys to

satisfy this need. Search for relevant web pages containing

information about the targeted products, find competing

products, read reviews, and identify pros and cons.

 Here we are finding a set of comparable

entities given a user’s input entity. For example, given an

entity, Dell L124 (a Laptop), we want to find comparable

entities such as Dell S5, HP N123 and so on. In general, it

is difficult to decide if two entities are comparable or not

since people are compare apples and oranges for various

reasons. For example, Ford and BMW might be

comparable as car manufacturers or as market segments

that their products are targeting, but sometimes we rarely

see people comparing car models ―Ford Focus‖ and

―BMW 68i‖. Things get more complicated when an entity

has several functionalities or we can say in case of laptop

and mobile as they are having several features. For

example, one might compare ―iPhone‖ and ―PSP‖ as

―portable game player‖ wharere compare ―iPhone‖ and

―Nokia N95‖ as ―mobile phone‖. So plenty of comparative

questions are posted online, which provide evidences for

what people want to compare, e.g. ―Which to buy, iPod or

iPhone?‖. We call ―iPod‖ and ―iPhone‖ in this example as

comparators so In this paper, we define comparative

questions and comparators.

In this paper, we define comparative questions and

comparators as:

Comparative question: A question that intends to

compare two or more entities and it has to mention these

entities explicitly in the question.

Comparator: An entity which is a target of comparison

in a comparative question.

According to these definitions, Q1 and Q2 below are not

comparative questions while Q3 is.

―Inspiron 5110 15r‖ and ―Vostro 14 V3456 Notebook‖ are

comparators.

Q1: ―Which one is better?‖

Q2: ―Is Inspiron 5110 15r the best camera?‖

Q3: ―What‟s the difference between Inspiron 5110 15r

Touch and Vostro 14 V3456 Notebook?‖

The goal of this work is mining comparators from

comparative questions. The results would be very useful in

helping users‟ exploration of alternative choices by

suggesting comparable entities based on other users‟ prior

requests. To mine comparators from comparative

questions, we first have to detect whether a question is

comparative or not. According to our definition, a

comparative question has to be a question with intent to

compare at least two entities. Please note that a question

containing at least two entities is not a comparative

question if it does not have comparison intent. However,

we observe that a question is very likely to be a

comparative question if it contains at least two entities.

We leverage this insight and develop a weakly supervised

bootstrapping method to identify comparative questions

and extract comparators simultaneously. To our best

knowledge, this is the first attempt to specially address the

problem on finding good comparators to support users‟

comparison activity.

ISSN (Online) 2278-1021
ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 8, August 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4867 319

We are also the first to propose using comparative

questions posted online that reflect what users truly care

about as the medium from which we mine comparable

entities.

II. RELATED WORK

[1] Nitin jindal and Bingliu introduced the problem of

identifying comparative sentences in text documents. The

problem is related to but quite different from

sentiment/opinion sentence identification or classification.

Sentiment classification studies the problem of classifying

a document or a sentence based on the subjective opinion

of the author. An important application area of

sentiment/opinion identification is business intelligence as

a product manufacturer always wants to know consumers’

opinions on its products. Comparisons on the other hand

can be subjective or objective. Furthermore, a comparison

is not concerned with an object in isolation. Instead, it

compares the object with others. An example opinion

sentence is ―the sound quality of CD player X is poor‖. An

example comparative sentence is ―the sound quality of CD

player X is not as good as that of CD player Y‖. Clearly,

these two sentences give different information.

 A subjective comparative sentence may be

 ―Car X is much better than Car Y‖

 An objective comparative sentence may be

 ―Car X is 2 feet longer than Car Y‖

Such sentences are useful in many applications, e.g.,

marketing intelligence, product benchmarking, and e-

commerce. We first analyzed different types of

comparative sentences from both the linguistic point of

view and the practical usage point of view, and showed

that existing linguistic studies have some limitations.

 [2] Greg Linden, Brent Smith, and Jeremy York At

Amazon.com, we use recommendation algorithms to

personalize the online store for each customer. The store

radically changes based on customer interests, showing

programming titles to a software engineer and baby toys to

a new mother. The click-through and conversion rates —

two important measures of Web-based and email

advertising effectiveness — vastly exceed those of

untargeted content such as banner advertisements and top-

seller lists.

 Most recommendation algorithms start by finding

a set of customers whose purchased and rated items

overlap the user’s purchased and rated items.2 The

algorithm aggregates items from these similar customers,

eliminates items the user has already purchased or rated,

and recommends the remaining items to the user. Two

popular versions of these algorithms are collaborative

filtering and cluster models.

 [3] Nitin jindal and Bing liu introduced a text mining

problem, comparative sentence mining. A comparative

sentence expresses an ordering relation between two sets

of entities with respect to some common features. For

example, the comparative sentence ―Canon’s optics are

better than those of Sony and Nikon‖ expresses the

comparative relation: (better, {optics}, {Canon}, {Sony,

Nikon}). Given a set of evaluative texts on the Web, e.g.,

reviews, forum postings, and news articles, the task of

comparative sentence mining is (1) to identify comparative

sentences from the texts and (2) to extract comparative

relations from the identified comparative sentences. This

problem has many applications. For example, a product

manufacturer wants to know customer opinions of its

products in comparison with those of its competitors.

[4] Claire Cardie explained the use of empirical, machine

learning methods for a particular natural language–

understanding task—information extraction. The author

presents a generic architecture for information-extraction

systems and then surveys the learning algorithms that have

been developed to address the problems of accuracy,

portability, and knowledge acquisition for each component

of the architecture.

2.1 Overview

In terms of discovering related items for an entity, our

work is similar to the research on recommender systems,

which recommend items to a user. Recommender systems

mainly rely on similarities between items and/or their

statistical correlations in user log data (Linden et al.,

2003). For example, Amazon recommends products to its

customers based on their own purchase histories, similar

customers‟ purchase histories, and similarity between

products. However, recommending an item is not

equivalent to finding a comparable item. In the case of

Amazon, the purpose of recommendation is to entice their

customers to add more items to their shopping carts by

suggesting similar or related items. While in the case of

comparison, we would like to help users explore

alternatives, i.e. helping them make a decision among

comparable items. For example, it is reasonable to

recommend ―iPod speaker‖ or ―iPod batteries‖ if a user is

interested in ―iPod‖, but we would not compare them with

―iPod‖. However, items that are comparable with ―iPod‖

such as ―iPhone‖ or ―PSP‖ which were found in

comparative questions posted by users are difficult to be

predicted simply based on item similarity between them.

Although they are all music players, ―iPhone‖ is mainly a

mobile phone, and ―PSP‖ is mainly a portable game

device. They are similar but also different therefore beg

comparison with each other. It is clear that comparator

mining and item recommendation are related but not the

same. Our work on comparator mining is related to the

research on entity and relation extraction in information

extraction (Cardie, 1997; Califf and Mooney, 1999;

Soderland, 1999; Radev et al., 2002; Carreras et al., 2003).

Specifically, the most relevant work is by Jindal and Liu

(2006a and 2006b) on mining comparative sentences and

relations. Their methods applied class sequential rules

(CSR) (Chapter 2, Liu 2006) and label sequential rules

(LSR) (Chapter 2, Liu 2006) learned from annotated

corpora to identify comparative sentences and extract

comparative relations respectively in the news and review

domains.

The same techniques can be applied to comparative

question identification and comparator mining from

ISSN (Online) 2278-1021
ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 8, August 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4867 320

questions. However, their methods typically can achieve

high precision but suffer from low recall (Jindal and Liu,

2006b) (J&L). However, ensuring high recall is crucial in

our intended application scenario where users can issue

arbitrary queries. To address this problem, we develop a

weakly-supervised bootstrapping pattern learning method

by effectively leveraging unlabeled questions.

Bootstrapping methods have been shown to be very

effective in previous information extraction research

(Riloff, 1996; Riloff and Jones, 1999; Ravichandran and

Hovy, 2002; Mooney and Bunescu, 2005; Kozareva et al.,

2008). Our work is similar to them in terms of

methodology using bootstrapping technique to extract

entities with a specific relation. However, our task is

different from theirs in that it requires not only extracting

entities (comparator extraction) but also ensuring that the

entities are extracted from comparative questions

(comparative question identification), which is generally

not required in IE task.

2.2 Jindal & Liu 2006

In this subsection, we provide a brief summary of the

comparative mining method proposed by Jindal and Liu

(2006a and 2006b), which is used as baseline for

comparison and represents the state-of-the-art in this area.

We first introduce the definition of CSR and LSR rule

used in their approach, and then describe their comparative

mining method. Readers should refer to J&L‟s original

papers for more details.

CSR and LSR

CSR is a classification rule. It maps a sequence pattern

S(𝑠1𝑠2 … 𝑠𝑛) to a class C. In our problem, C is either

comparative or non-comparative.

Given a collection of sequences with class information,

every CSR is associated to two parameters: support and

confidence. Support is the proportion of sequences in the

collection containing S as a subsequence. Confidence is

the proportion of sequences labeled as C in the sequences

containing the S. These parameters are important to

evaluate whether a CSR is reliable or not. LSR is a

labeling rule. It maps an input sequence pattern 𝑆(𝑠1𝑠2 …

𝑠𝑖 … 𝑠𝑛) to a labelled sequence 𝑆′(𝑠1𝑠2 … 𝑙𝑖 … 𝑠𝑛) by

replacing one token (𝑠𝑖) in the input sequence with a

designated label (𝑙𝑖). This token is referred as the anchor.

The anchor in the input sequence could be extracted if its

corresponding label in the labelled sequence is what we

want (in our case, a comparator). LSRs are also mined

from an annotated corpus, therefore each LSR also have

two parameters: support and confidence. They are

similarly defined as in CSR.

Supervised Comparative Mining Method

J&L treated comparative sentence identification as a

classification problem and comparative relationextraction

as an information extraction problem. They first manually

created a set of 83 keywords such as beat, exceed, and

outperform that are likely indicators of comparative

sentences.

These keywords were then used as pivots to create part-of-

speech (POS) sequence data. A manually annotated corpus

with class information, i.e. comparative or non-

comparative, was used to create sequences and CSRs were

mined. A Naïve Bayes classifier was trained using the

CSRs as features. The classifier was then used to identify

comparative sentences.

Given a set of comparative sentences, J&L manually

annotated two comparators with labels $ES1 and $ES2

and the feature compared with label $FT for each

sentence. J&L‟s method was only applied to noun and

pronoun. To differentiate noun and pronoun that are not

comparators or features, they added the fourth label $NEF,

i.e. non-entity-feature. These labels were used as pivots

together with special tokens li & rj 1 (token position),

#start (beginning of a sentence), and #end (end of a

sentence) to generate sequence data, sequences with single

label only and minimum support greater than 1% are

retained, and then LSRs were created. When applying the

learned LSRs for extraction, LSRs with higher confidence

were applied first. J&L‟s method have been proved

effective in their experimental setups. However, it has the

following weaknesses:

set of comparative sentence indicative keywords. These

keywords were manually created and they offered no

guidelines to select keywords for inclusion. It is also

difficult to ensure the completeness of the keyword list.

many different ways. To have high recall, a large

annotated training corpus is necessary. This is an

expensive process.

are mostly a combination of POS tags and keywords. It

is a surprise that their rules achieved high precision but

low recall. They attributed most errors to POS tagging

errors. However, we suspect that their rules might be too

specific and overfit their small training set (about 2,600

sentences). We would like to increase recall, avoid over

fitting, and allow rules to include discriminative lexical

tokens to retain precision.

III. SYSTEM ARCHITECHURE

3.1 Proposed Architecture is developed for to get the best

product while user purchasing things as comparing one

thing with another is typical human decision making

process. In this architecture we are giving various options

to user to select the product by calculating best feature.

Here when user type the comparative question the system

will identify that question typed by user is comparable or

not, If question is comparable then it will extract the

products from the given question. Once we get the product

we can apply weighted analysis algorithm and by

calculating total feature of every product final result will

get.Proposed system mainly consists of 2 modules

i.e.Admin and User Module. Admin will add product,

query, and feature rate.

3.2 Steps

Step1) Store Sequential patterns [indicative extraction

pattern (IEP)] and comparator data also to use as pivots

to create sequence data.

ISSN (Online) 2278-1021
ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 8, August 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4867 321

Step2) Take user input as comparative Question.

 Step3) Compare with Sequential patterns and find closely

related pattern format by using cosine similarity

algorithm and which are passing to the next step.

Step4) If (Sequential patterns >1)

 {

 Select one of them by comparing other

comparators like max cosine similarity and max

ranking value from ranking

 }

Step5) on the basis of those i.e. sequential patterns and

comparator data we get the comparable attributes of

both the products which will compare in all terms and

gives us result as in required pattern.

 Fig.3.1 System Architecture

3.3 Cosine similarity algorithm used for finding closely

related patterns

1) Take all sequential patterns in one String array take the

input from user. i.e. comparator question

2) Calculate frequency of all strings and user input string

also on the basis of count of how many words comes in

sequence patterns repeatedly.

3) By using these frequencies we can calculate cosine

similarity of all patterns

 cosine similarity = a.b/((a^2)* (b^2))

 Where,

 a = user input comparator question’s cosine similarity

 b = sequential patterns cosine similarity

4) So when we get cosine similarity we can easily find

closely related pattern among all.

3.4 Weight Analysis Algorithm

Total Weight of each product will get calculate by adding

weight of every attributes of single item. Some attributes

whose values will be number, their values will get

calculated using Step 1 and weight of some attributes will

get calculated using step 2. Then it will sum these weights

which will return weight of single item.

➢ Step 1:

➔ Find Threshold = sum of columns/ total rows(or items).

➔ Find max value among all.

➔ assign x= weight(feature rank) to max value

= Threshold + (total rows-count).

➔ Again find max among remaining items and assign

weight.

➔ Follow this steps until all finish.

Note :=> this weight calculation will be for that features or

attributes whose value will contain integer values.

like memory, camera(3 MP or 4 MP etc).

➔ Admin will assign some weight(w) to all attributes.

for example:(w1) Camera: 3, (w2)RAM: 5, (w3)HDD: 4

Then total rank(of each item)= w1x1+w2x2+w3x3

➢ Step 2: Some Features like OS, Processor System will

take rating from users and then it will find its average as

weight.

IV. CONCLUSION

In this paper, we present cosine similarity algorithm to

identify comparative questions and extract comparator

pairs simultaneously, that means we can extract the

products. We rely on the key insight that a good

comparative question identification pattern should extract

good comparators, and a good comparator pair should

occur in good comparative questions to cosine similarity

system. By leveraging large amount of unlabeled data and

the cosine similarity analysis

The experimental results show that our method is effective

in both comparative question identification and

comparator extraction. Now once we get products in

between user want to compare we can apply weight

analysis algorithm in which the features of the products

are calculated and depend on highest rating on product the

best answer return to user .

REFERENCES

[1] Nitin Jindal and Bing Liu. 2006a. Identifying comparative sentences

in text documents. In Proceedings of SIGIR ’06, pages 244–251.

[2] Greg Linden, Brent Smith and Jeremy York. 2003. Amazon.com
Recommendations: Item-to-Item Collaborative Filtering. IEEE

Internet Computing, pages 76-80.

[3] Nitin Jindal and Bing Liu. 2006b. Mining comparative sentences and
relations. In Proceedings of AAAI ’06.

[4] Claire Cardie. 1997. Empirical methods in information extraction. AI

magazine, 18:65–79.

[5]Deepak Ravichandran and Eduard Hovy. 2002. Learning surface text

patterns for a question answering system. In Proceedings of ACL

’02, pages 41–47.
[6]Ellen Riloff and Rosie Jones. 1999. Learning dictionaries for

information extraction by multi-level bootstrapping. In Proceedings

of AAAI ’99/IAAI ’99, pages 474–479.
[7]Ellen Riloff. 1996. Automatically generating extraction patterns from

untagged text. In Proceedings o fthe 13th National Conference on

Artificial Intelligence,pages 1044–1049.
[8]Stephen Soderland. 1999. Learning information extraction rules for

semi-structured and free text. Machine Learning, 34(1-3):233–272.

	I. Introduction
	II. Related work
	III. system architechure
	IV. conclusion
	References

