
ISSN (Online) 2278-1021 
ISSN (Print) 2319 5940 

 
International Journal of Advanced Research in Computer and Communication Engineering 
Vol. 4, Issue 8, August 2015 

 

Copyright to IJARCCE                                                 DOI 10.17148/IJARCCE.2015.4867                                                  318 

Product selection from comparative question 

using cosine similarity analysis and weight 

feature analysis 
 

Miss. Pranali Patil
1
, Mr. Sudip Tembhurne

2
, Mr. Rugved Deolekar

3
 

M. E. Student, Computer Engineering, VIT Mumbai, India
1,2

 

Assistant Professor, Department of Computer Engineering, VIT Mumbai, India
3
 

 

Abstract: Comparing one product with another product when anyone want to purchase products  is very typical 

decision making process. However it is not always easy to know what product compare and what are the alternatives 

are available  so to address such difficulty we propose a novel way that can help user to get best product by calculating 

feature weight of respective products. The feature weight of product is calculated by using weight analysis. When any 

new product is added or any new user given rank then the table where total rank is going to calculate for every product 

and for every feature is updated as per weighted feature algorithm .On that basis when user gives query to application 

then it will check first is that is a comparable question or not by using cosine similarity analysis and show result the 

best from those products respectively. 
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I. INTRODUCTION  

Comparing alternative options while purchasing 

something is one essential step in decision-making that we 

carry out every day. For example, if someone is interested 

in certain products such as Laptops or Mobile phones , the 

person would want to know what the alternatives are and 

compare different Laptops or Mobiles before  making a 

purchase. This type of comparison activity is very 

common in our daily life but requires high knowledge 

skill. Magazines such as Consumer Reports and PC 

Magazine and online media such as CNet.com strive in 

providing editorial comparison content and surveys to 

satisfy this need. Search for relevant web pages containing 

information about the targeted products, find competing 

products, read reviews, and identify pros and cons.  
 

                           Here we are finding a set of comparable 

entities given a user’s input entity. For example, given an 

entity, Dell L124 (a Laptop), we want to find comparable 

entities such as Dell S5, HP N123 and so on. In general, it 

is difficult to decide if two entities are comparable or not 

since people are compare apples and oranges for various 

reasons. For example, Ford and BMW might be 

comparable as car manufacturers or as market segments 

that their products are targeting, but sometimes we rarely 

see people comparing car models ―Ford Focus‖ and 

―BMW 68i‖. Things get more complicated when an entity 

has several functionalities or we can say in case of laptop 

and mobile as they are having several features. For 

example, one might compare ―iPhone‖ and ―PSP‖ as 

―portable game player‖  wharere compare ―iPhone‖ and 

―Nokia N95‖ as ―mobile phone‖. So plenty of comparative 

questions are posted online, which provide evidences for 

what people want to compare, e.g. ―Which to buy, iPod or 

iPhone?‖. We call ―iPod‖ and ―iPhone‖ in this example as 

comparators so In this paper, we define comparative 

questions and comparators.  

 
 

In this paper, we define comparative questions and 

comparators as: 

Comparative question: A question that intends to 

compare two or more entities and it has to mention these 

entities explicitly in the question. 

Comparator: An entity which is a target of comparison 

in a comparative question. 
 

According to these definitions, Q1 and Q2 below are not 

comparative questions while Q3 is. 

―Inspiron 5110 15r‖ and ―Vostro 14 V3456 Notebook‖ are 

comparators. 

Q1: ―Which one is better?‖ 

Q2: ―Is Inspiron 5110 15r  the best camera?‖ 

Q3: ―What‟s the difference between Inspiron 5110 15r 

Touch and Vostro 14 V3456 Notebook?‖ 
 

The goal of this work is mining comparators from 

comparative questions. The results would be very useful in 

helping users‟ exploration of alternative choices by 

suggesting comparable entities based on other users‟ prior 

requests. To mine comparators from comparative 

questions, we first have to detect whether a question is 

comparative or not. According to our definition, a 

comparative question has to be a question with intent to 

compare at least two entities. Please note that a question 

containing at least two entities is not a comparative 

question if it does not have comparison intent. However, 

we observe that a question is very likely to be a 

comparative question if it contains at least two entities. 

We leverage this insight and develop a weakly supervised 

bootstrapping method to identify comparative questions 

and extract comparators simultaneously. To our best 

knowledge, this is the first attempt to specially address the 

problem on finding good comparators to support users‟ 

comparison activity.  
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We are also the first to propose using comparative 

questions posted online that reflect what users truly care 

about as the medium from which we mine comparable 

entities. 

II. RELATED WORK 

[1] Nitin jindal and Bingliu introduced the problem of 

identifying comparative sentences in text documents. The 

problem is related to but quite different from 

sentiment/opinion sentence identification or classification. 

Sentiment classification studies the problem of classifying 

a document or a sentence based on the subjective opinion 

of the author. An important application area of 

sentiment/opinion identification is business intelligence as 

a product manufacturer always wants to know consumers’ 

opinions on its products. Comparisons on the other hand 

can be subjective or objective. Furthermore, a comparison 

is not concerned with an object in isolation. Instead, it 

compares the object with others. An example opinion 

sentence is ―the sound quality of CD player X is poor‖. An 

example comparative sentence is ―the sound quality of CD 

player X is not as good as that of CD player Y‖. Clearly, 

these two sentences give different information. 
 

            A subjective comparative sentence may be 

            ―Car X is much better than Car Y‖ 

            An objective comparative sentence may be 

                           ―Car X is 2 feet longer than Car Y‖ 
 

Such sentences are useful in many applications, e.g., 

marketing intelligence, product benchmarking, and e-

commerce. We first analyzed different types of 

comparative sentences from both the linguistic point of 

view and the practical usage point of view, and showed 

that existing linguistic studies have some limitations. 
 

 [2] Greg Linden, Brent Smith, and Jeremy York At 

Amazon.com, we use recommendation algorithms to 

personalize the online store for each customer. The store 

radically changes based on customer interests, showing 

programming titles to a software engineer and baby toys to 

a new mother. The click-through and conversion rates — 

two important measures of Web-based and email 

advertising effectiveness — vastly exceed those of 

untargeted content such as banner advertisements and top-

seller lists. 

             Most recommendation algorithms start by finding 

a set of customers whose purchased and rated items 

overlap the user’s purchased and rated items.2 The 

algorithm aggregates items from these similar customers, 

eliminates items the user has already purchased or rated, 

and recommends the remaining items to the user. Two 

popular versions of these algorithms are collaborative 

filtering and cluster models. 
 

 [3] Nitin jindal and Bing liu introduced a text mining 

problem, comparative sentence mining. A comparative 

sentence expresses an ordering relation between two sets 

of entities with respect to some common features. For 

example, the comparative sentence ―Canon’s optics are 

better than those of Sony and Nikon‖ expresses the 

comparative relation: (better, {optics}, {Canon}, {Sony, 

Nikon}). Given a set of evaluative texts on the Web, e.g., 

reviews, forum postings, and news articles, the task of 

comparative sentence mining is (1) to identify comparative 

sentences from the texts and (2) to extract comparative 

relations from the identified comparative sentences. This 

problem has many applications. For example, a product 

manufacturer wants to know customer opinions of its 

products in comparison with those of its competitors. 
 

[4] Claire Cardie explained the use of empirical, machine 

learning methods for a particular natural language– 

understanding task—information extraction. The author 

presents a generic architecture for information-extraction 

systems and then surveys the learning algorithms that have 

been developed to address the problems of accuracy, 

portability, and knowledge acquisition for each component 

of the architecture. 
 

2.1 Overview 

In terms of discovering related items for an entity, our 

work is similar to the research on recommender systems, 

which recommend items to a user. Recommender systems 

mainly rely on similarities between items and/or their 

statistical correlations in user log data (Linden et al., 

2003). For example, Amazon recommends products to its 

customers based on their own purchase histories, similar 

customers‟ purchase histories, and similarity between 

products. However, recommending an item is not 

equivalent to finding a comparable item. In the case of 

Amazon, the purpose of recommendation is to entice their 

customers to add more items to their shopping carts by 

suggesting similar or related items. While in the case of 

comparison, we would like to help users explore 

alternatives, i.e. helping them make a decision among 

comparable items. For example, it is reasonable to 

recommend ―iPod speaker‖ or ―iPod batteries‖ if a user is 

interested in ―iPod‖, but we would not compare them with 

―iPod‖. However, items that are comparable with ―iPod‖ 

such as ―iPhone‖ or ―PSP‖ which were found in 

comparative questions posted by users are difficult to be 

predicted simply based on item similarity between them. 

Although they are all music players, ―iPhone‖ is mainly a 

mobile phone, and ―PSP‖ is mainly a portable game 

device. They are similar but also different therefore beg 

comparison with each other. It is clear that comparator 

mining and item recommendation are related but not the 

same. Our work on comparator mining is related to the 

research on entity and relation extraction in information 

extraction (Cardie, 1997; Califf and Mooney, 1999; 

Soderland, 1999; Radev et al., 2002; Carreras et al., 2003). 

Specifically, the most relevant work is by Jindal and Liu 

(2006a and 2006b) on mining comparative sentences and 

relations. Their methods applied class sequential rules 

(CSR) (Chapter 2, Liu 2006) and label sequential rules 

(LSR) (Chapter 2, Liu 2006) learned from annotated 

corpora to identify comparative sentences and extract 

comparative relations respectively in the news and review 

domains. 
 

The same techniques can be applied to comparative 

question identification and comparator mining from 
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questions. However, their methods typically can achieve 

high precision but suffer from low recall (Jindal and Liu, 

2006b) (J&L). However, ensuring high recall is crucial in 

our intended application scenario where users can issue 

arbitrary queries. To address this problem, we develop a 

weakly-supervised bootstrapping pattern learning method 

by effectively leveraging unlabeled questions. 

Bootstrapping methods have been shown to be very 

effective in previous information extraction research 

(Riloff, 1996; Riloff and Jones, 1999; Ravichandran and 

Hovy, 2002; Mooney and Bunescu, 2005; Kozareva et al., 

2008). Our work is similar to them in terms of 

methodology using bootstrapping technique to extract 

entities with a specific relation. However, our task is 

different from theirs in that it requires not only extracting 

entities (comparator extraction) but also ensuring that the 

entities are extracted from comparative questions 

(comparative question identification), which is generally 

not required in IE task. 
 

2.2 Jindal & Liu 2006 

In this subsection, we provide a brief summary of the 

comparative mining method proposed by Jindal and Liu 

(2006a and 2006b), which is used as baseline for 

comparison and represents the state-of-the-art in this area. 

We first introduce the definition of CSR and LSR rule 

used in their approach, and then describe their comparative 

mining method. Readers should refer to J&L‟s original 

papers for more details. 
 

CSR and LSR 

CSR is a classification rule. It maps a sequence pattern 

S(𝑠1𝑠2 … 𝑠𝑛 ) to a class C. In our problem, C is either 

comparative or non-comparative. 
 

Given a collection of sequences with class information, 

every CSR is associated to two parameters: support and 

confidence. Support is the proportion of sequences in the 

collection containing S as a subsequence. Confidence is 

the proportion of sequences labeled as C in the sequences 

containing the S. These parameters are important to 

evaluate whether a CSR is reliable or not. LSR is a 

labeling rule. It maps an input sequence pattern 𝑆(𝑠1𝑠2 … 

𝑠𝑖 … 𝑠𝑛) to a labelled sequence 𝑆′(𝑠1𝑠2 … 𝑙𝑖 … 𝑠𝑛) by 

replacing one token (𝑠𝑖 ) in the input sequence with a 

designated label (𝑙𝑖 ). This token is referred as the anchor. 

The anchor in the input sequence could be extracted if its 

corresponding label in the labelled sequence is what we 

want (in our case, a comparator). LSRs are also mined 

from an annotated corpus, therefore each LSR also have 

two parameters: support and confidence. They are 

similarly defined as in CSR. 
 

Supervised Comparative Mining Method 

J&L treated comparative sentence identification as a 

classification problem and comparative relationextraction 

as an information extraction problem. They first manually 

created a set of 83 keywords such as beat, exceed, and 

outperform that are likely indicators of comparative 

sentences. 
 

These keywords were then used as pivots to create part-of-

speech (POS) sequence data. A manually annotated corpus 

with class information, i.e. comparative or non-

comparative, was used to create sequences and CSRs were 

mined. A Naïve Bayes classifier was trained using the 

CSRs as features. The classifier was then used to identify 

comparative sentences. 
 

Given a set of comparative sentences, J&L manually 

annotated two comparators with labels $ES1 and $ES2 

and the feature compared with label $FT for each 

sentence. J&L‟s method was only applied to noun and 

pronoun. To differentiate noun and pronoun that are not 

comparators or features, they added the fourth label $NEF, 

i.e. non-entity-feature. These labels were used as pivots 

together with special tokens li & rj 1 (token position), 

#start (beginning of a sentence), and #end (end of a 

sentence) to generate sequence data, sequences with single 

label only and minimum support greater than 1% are 

retained, and then LSRs were created. When applying the 

learned LSRs for extraction, LSRs with higher confidence 

were applied first. J&L‟s method have been proved 

effective in their experimental setups. However, it has the 

following weaknesses: 
 

set of comparative sentence indicative keywords. These 

keywords were manually created and they offered no 

guidelines to select keywords for inclusion. It is also 

difficult to ensure the completeness of the keyword list. 

many different ways. To have high recall, a large 

annotated training corpus is necessary. This is an 

expensive process. 

are mostly a combination of POS tags and keywords. It 

is a surprise that their rules achieved high precision but 

low recall. They attributed most errors to POS tagging 

errors. However, we suspect that their rules might be too 

specific and overfit their small training set (about 2,600 

sentences). We would like to increase recall, avoid over 

fitting, and allow rules to include discriminative lexical 

tokens to retain precision. 

III. SYSTEM ARCHITECHURE 

3.1 Proposed Architecture is developed for to get the best 

product while user purchasing things as comparing one 

thing with another is typical human decision making 

process. In this architecture we are giving various options 

to user to select the product by calculating best feature. 

Here when user type the comparative question the system 

will identify that question typed by user is comparable or  

not, If question is comparable then it will extract the 

products from the given question. Once we get the product 

we can apply weighted analysis algorithm and by 

calculating total feature of every product final result will 

get.Proposed system mainly consists of 2 modules 

i.e.Admin and User Module. Admin will add product, 

query, and feature rate. 
 

3.2 Steps 

Step1)   Store Sequential patterns [indicative extraction 

pattern (IEP)] and comparator data also to use as pivots 

to create sequence data. 
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Step2)    Take user input as comparative Question. 

 Step3)  Compare with Sequential patterns and find closely 

related pattern format by using cosine similarity 

algorithm and which are passing to the next step. 

Step4)   If (Sequential patterns >1) 

                 { 

                          Select one of them by comparing other 

comparators like max cosine  similarity and max 

ranking value from ranking  

                 } 

Step5)  on the basis of those i.e. sequential patterns and 

comparator data we get the comparable  attributes of 

both the products which will compare in all terms and 

gives us result as in required pattern. 
 

 
                             Fig.3.1  System Architecture   
 

3.3 Cosine similarity algorithm used for finding closely 

related patterns  

1) Take all sequential patterns in one String array take the 

input from user. i.e. comparator question  

2) Calculate frequency of all strings and user input string 

also on the basis of count of how many words comes in 

sequence patterns repeatedly. 

3)  By using these frequencies we can calculate cosine 

similarity of all patterns  

              cosine similarity  = a.b/( (a^2)* (b^2)) 

 Where,  

    a = user input comparator question’s cosine similarity 

        b = sequential patterns cosine similarity     

4) So when we get cosine similarity we can easily find 

closely related pattern among all.  
 

3.4 Weight Analysis Algorithm 

Total Weight of each product will get calculate by adding 

weight of every attributes of single item. Some attributes 

whose values will be number, their values will get 

calculated using Step 1 and weight of some attributes will 

get calculated using step 2. Then it will sum these weights 

which will return weight of single item. 

➢ Step 1: 

➔ Find Threshold = sum of columns/ total rows(or items). 

➔ Find max value among all. 

➔ assign x= weight(feature rank) to max value  

= Threshold + (total rows-count). 

➔ Again find max among remaining items and assign 

weight. 

➔ Follow this steps until all finish. 
 

Note :=> this weight calculation will be for that features or 

attributes whose value will contain integer values. 

like memory, camera(3 MP or 4 MP etc). 
 

➔ Admin will assign some weight(w) to all attributes. 

for example:(w1) Camera: 3, (w2)RAM: 5, (w3)HDD: 4 

Then total rank(of each item)= w1x1+w2x2+w3x3 
 

➢ Step 2: Some Features like OS, Processor System will 

take rating from users and then it will find its average as 

weight. 

IV. CONCLUSION 

In this paper, we present cosine similarity algorithm to 

identify comparative questions and extract comparator 

pairs simultaneously, that means we can extract the 

products.  We rely on the key insight that a good 

comparative question identification pattern should extract 

good comparators, and a good comparator pair should 

occur in good comparative questions to cosine similarity 

system. By leveraging large amount of unlabeled data and 

the cosine similarity analysis 

The experimental results show that our method is effective 

in both comparative question identification and 

comparator extraction. Now once we get products in 

between user want to compare we can apply weight 

analysis algorithm in which the features of the products  

are calculated and depend on highest rating on product the 

best answer return to user . 
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